©2018 by Yoon lab


Neural stem cell biology

Our longstanding question is how neural stem cells are regulated to achieve precise cell division, cell migration, cell fate specification and differentiation. We have been focused on understanding the regulation of neural stem cells during neuronal development and in the adult brain using both mouse and human induced pluripotent stem cell (iPSC) models. 



Whereas transcriptional regulation of stem cells has been intensively studied, very little is known about how post-transcriptional mechanisms may modulate stem cell properties. Especially, recent evidences suggest that various chemical modifications on RNA can affect mRNA metabolism including decay, transport, splicing and translation, led to the emergence of the field of epitranscriptomics. Similar with epigenetic modification, dynamic and reversible epitranscriptomic modification on RNA confers further flexibility on regulation of gene expression in various tissues.  We endeavor to decipher the molecular mechanisms controlling RNA metabolism in neural stem cells during normal development and how alterations in RNA regulatory programs lead to human brain disorders.

Modeling human neurodevelopmental disorders with 3D brain organoid

Using remarkable self-organizing capacity of stem cell, small human-brain-like structure can be created in a dish.

3D organoids for various regions of the brain provide an unprecedented opportunity to investigate complex features of human brain development and disease. With patient-derived iPSC and gene-edited pluripotent stem cells mimicking patient mutations by CRISPR/Cas9 technology, we have studied etiology and pathology of human neurodevelopmental disorders, such as microcephaly, autism and schizophrenia, in 3D brain organoid models.