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SUMMARY

Defects in brain development are believed to
contribute toward the onset of neuropsychiatric
disorders, but identifying specific underlying mecha-
nisms has proven difficult. Here, we took a multi-
faceted approach to investigate why 15q11.2 copy
number variants are prominent risk factors for
schizophrenia and autism. First, we show that human
iPSC-derived neural progenitors carrying 15q11.2
microdeletion exhibit deficits in adherens junctions
and apical polarity. This results from haploinsuffi-
ciency ofCYFIP1, a genewithin 15q11.2 that encodes
a subunit of the WAVE complex, which regulates
cytoskeletal dynamics. In developing mouse cortex,
deficiency in CYFIP1 and WAVE signaling similarly
affects radial glial cells, leading to their ectopic local-
ization outside of the ventricular zone. Finally, tar-
geted human genetic association analyses revealed
an epistatic interaction between CYFIP1 and WAVE
signalingmediator ACTR2 and risk for schizophrenia.
Our findings provide insight into how CYFIP1 regu-
lates neural stem cell function and may contribute
to the susceptibility of neuropsychiatric disorders.

INTRODUCTION

Neuropsychiatric disorders, including schizophrenia and autism,

are debilitating conditions that are postulated to have a neuro-

developmental etiology (Geschwind, 2009; Weinberger, 1987).

Significant progress has been made to identify the genetic basis

of these disorders. In addition to single-nucleotide polymor-
phisms (SNPs), submicroscopic variations in DNA copy number

(CNVs) are also widespread in human genomes and specific

CNVs have been identified as significant risk factors for schizo-

phrenia and autism (Malhotra and Sebat, 2012). Because

CNVs frequently contain multiple genes and are more difficult

to model in mice using traditional gene targeting techniques,

we know little about how these CNVs affect neural development.

Novel approaches are needed to investigate these genetic risk

factors in neural development and identify their signaling mech-

anisms, which in turn could generate new hypotheses for identi-

fication of additional risk factors.

15q11.2 CNVs have emerged as prominent risk factors for

various neuropsychiatric disorders, including schizophrenia,

autistic spectrum disorder, and intellectual disability (Malhotra

and Sebat, 2012). 15q11.2 microdeletion (15q11.2 del) was

identified as one of the most frequent CNVs associated with

increased risk for schizophrenia in two large studies (Interna-

tional Schizophrenia Consortium, 2008; Stefansson et al.,

2008), a finding subsequently confirmed in additional cohorts

(Kirov et al., 2009; Tam et al., 2010; Zhao et al., 2013a). Even in

normal subjects, 15q11.2 del is associated with cognitive varia-

tion and changes in structural measures on MRI scanning (Ste-

fansson et al., 2014). 15q11.2 CNVs encompass four genes,

nonimprinted in Prader/Willi Angelman 1 and 2 (NIPA1 and

NIPA2), CYFIP1, and TUBGCP5 (Figure 1A). While little is known

about functions of these genes in mammalian neural develop-

ment, CYFIP1 has been shown to interact with Rac1 (Kobayashi

et al., 1998), FMRP (Schenck et al., 2001), and eIF4E (Napoli

et al., 2008). Biochemical studies have also identified CYFIP1

as a regulator of the WAVE complex, consisting of WAVE1,

WAVE2, Nap1, and Abi1, a complex known to regulate Arp2/3-

mediated actin polymerization and membrane protrusion forma-

tion in nonneuronal cell lines (Kobayashi et al., 1998; Kunda et al.,

2003; Steffen et al., 2004). The function of WAVE signaling in

mammalian neurogenesis is not well understood.
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Figure 1. iPSC Derivation and Aberrant Neural Rosette Formation of hNPCs Differentiated from iPSC Lines Carrying 15q11.2 Del

(A) An ideogram of Chromosome 15 with proximal 15q11.2 region expanded. Blue boxes indicate the four deleted genes within 15q11.2 del, including CYFIP1.

(B) A schematic summary of the current study design.

(C) Sample light microscopic images and fluorescent images of fibroblasts and iPSC colonies for immunostaining of pluripotency markers. Scale bars represent

100 mm.

(D) Sample fluorescence in situ hybridization (FISH) images of donor fibroblasts and derived iPSC lines. Two FISH probes, one for CYFIP1 locus and one for

SNRPN locus (outside of 15q11.2; see A for the genomic location), were used. Scale bar represents 10 mm (upper panels) and 2 mm (lower panels).

(E and F) Defects in adherens junctions and apical polarity of hNPCs derived from iPSCs with 15q11.2 del. Shown on the left are sample confocal images of

immunostaining of atypical PKCl (E) and N-cadherin (F) for neural rosettes differentiated from iPSCs by the monolayer method. Scale bars represent 20 mm.

Shown on the right are quantifications of neural rosettes with complete ‘‘apical ring-like structure’’ (R90% coverage of apical-ring circumference with atypical

PKCl or N-cadherin immunoreactivity) or ‘‘partial/scattered’’ (<90% coverage). Values represent mean ± SEM (n = 3 cultures; ***p < 0.001; Student’s t test).

See also Figures S1 and S2 and Tables S1 and S2.
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Patient-derived induced pluripotent stem cells (iPSCs) provide

a new means to investigate how risk factors affect nervous

system development (Bellin et al., 2012; Christian et al., 2012).

Reprogrammed from somatic cells, iPSCs capture identical

risk alleles as the donor individual and provide a renewable

resource of previously inaccessible, disease-relevant human

cell types to facilitate molecular and cellular investigations. In

this emerging new field, recent iPSC studies were mostly

‘‘proof-of-principle’’ experiments that confirmed previous find-

ings from animal and postmortem human studies; its promise

as a discovery tool is just beginning to be realized.

While 15q11.2 del is linked to schizophrenia, common variants

within the deletion region have not shown similar association in

case control studies, possibly because of the weak impact of
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common SNPs on biological functions of individual genes. To

mimic the large dose effect of a whole gene deletion, we hypoth-

esized that genetic interactions within the biological network

linked to the function of specific genes within 15q11.2 del would

rise to the level of clinical association and that patient-derived

iPSC studies could provide an entry point to identify these net-

works (Figure 1B). We established iPSC lines from three individ-

uals carrying 15q11.2 del and compared them with iPSCs from

five individuals without the CNV. Analysis of iPSC-derived neural

rosettes with 15q11.2 del revealed impairments in adherens

junctions and polarity of human neural progenitor cells (hNPCs)

due to WAVE complex destabilization. Pinpointing CYFIP1-hap-

loinsufficiency within 15q11.2 as a underlying cause of hNPC de-

fects then guided our investigation of CYFIP1 and its signaling
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via the WAVE complex in regulating radial glia neural stem cells

(RGCs) in the developing mouse cortex in vivo. This, in turn, led

to targeted human genetic association analyses, resulting in the

identification of an epistatic interaction for risk of schizophrenia.

Our integrated analyses from multiple systems provide insight

into how 15q11.2 CNVs may contribute to defects in neural

development and brain disorders.

RESULTS

Defects in Adherens Junctions and Apical Polarity of
hNPCs Derived fromHuman iPSCs Carrying 15q11.2 Del
To determine how 15q11.2 del may affect human brain develop-

ment, we established multiple iPSC lines from skin fibroblasts of

three individuals carrying 15q11.2 del in one chromosome (Y1,

Y3, and Y4) and from three control individuals (C1, C2, and C3)

using nonintegrating approaches (Figure 1C; Table S1 available

online). We performed detailed quality control analyses of all

iPSC lines selected for the current study (Table S1). These iPSCs

maintained embryonic stem cell-like morphology, expressed

pluripotency-associated markers, and exhibited normal euploid

karyotypes (Figures 1C and S1; Tables S1 and S2). All iPSC lines

tested formed teratomas when injected into severe combined

immunodeficiency (SCID) mice (Table S1). We also included

iPSC lines from two neuropsychiatric patients with a DISC1

mutation as another group for comparison (D2 and D3) (Chiang

et al., 2011). Using DNA fluorescence in situ hybridization

(FISH), we confirmed one copy microdeletion at 15q11.2 locus

in Y1, Y3, and Y4, but not in other fibroblasts and iPSC lines

we examined (C1, C2, C3, D2, D3) (Figures 1A and 1D; Table S1).

We first differentiated iPSCs into relatively homogenous

primitive neural precursor cells (pNPCs) in monolayer using an

established protocol (Li et al., 2011). All lines were efficiently

differentiated into pNPCs expressing NESTIN and SOX2 (Fig-

ure S2A). No consistent differences in the NPC differentiation

efficacy or proliferation among different groups of iPSC lines

were detected (Figures S2A and S2B). To partially maintain

cell-cell interaction, we next generated cortical neural rosettes

using small molecule inhibitors and retinoic acid (Shi et al.,

2012). We initially used four iPSC lines for pilot phenotypic

characterization, including one iPSC line each from two control

subjects (C2-1 and C3-1) and two lines from one subject with

15q11.2 del (Y1-1 and Y1-3). Neural rosettes from C2-1 and

C3-1 iPSCs showed robust expression of atypical PKCl, an

apical polarity marker, as a ring-like structure at the luminal

surface of each rosette (Figure 1E), representing typical forma-

tion of apical-basal polarity of hNPCs (Shi et al., 2012). Interest-

ingly, the majority of neural rosettes from Y1-1 and Y1-3 iPSCs

exhibited scattered expression of atypical PKCl (Figure 1E).

The structure of adherens junctions as revealed by N-cadherin

immunostaining was also disrupted in the majority of rosettes

from two Y1-iPSC lines (Figure 1F). These results suggest that

gene(s) located within 15q11.2 del regulate apical polarity and

maintain adherens junctions of hNPCs.

WAVE Complex Destabilization and Polarity Defects of
hNPCs Due to CYFIP1 Haploinsufficiency
The actin cytoskeleton acts as a cytoplasmic anchor for

cadherin/catenin proteins at adherens junctions and its proper
organization is important for maintaining adherens junctions

and polarity of neural precursors in the developing mouse cortex

(Buchman and Tsai, 2007). Among the four genes within the

15q11.2 region, CYFIP1 is a regulator of the actin-modulating

WAVE complex (Kunda et al., 2003; Steffen et al., 2004). Indeed,

coimmunoprecipitation (co-IP) analysis showed that CYFIP1 in-

teracts with WAVE complex components WAVE1, WAVE2, and

NAP1 (NCKAP1) in normal hNPCs (Figure 2A). Therefore, we

assessed WAVE complex integrity in hNPCs derived from

different iPSC lines. Consistent with a haploinsufficiency model,

mRNAs of all four genes within 15q11.2 were expressed at

�50% levels in all hNPCs carrying 15q11.2 del compared to

those without the deletion (Figure S2C). CYFIP1 protein was

also expressed at �50% levels (Figures 2B, 2D, and S2D). Strik-

ingly, the expression of WAVE2 protein, but not its mRNA, in

15q11.2 del hNPCs was only �20% of that in control hNPCs

(Figures 2B, 2E, and S2D). The effect of 15q11.2 microdeletion

appeared to be specific, as hNPCs derived from mutant

DISC1-iPSC lines showed normal expression of CYFIP1 and

WAVE2 proteins (Figures 2D, 2E, and S2D). Together, these

biochemical analyses demonstrated a specific defect of WAVE

complex stabilization in hNPCs with 15q11.2 microdeletion.

Is CYFIP1 haploinsufficiency the major cause of observed de-

fects in hNPCs carrying 15q11.2 del? First, we performed

complementation experiments using lentiviruses to increase

CYFIP1 levels in two Y1-iPSC lines. We selected two iPSC lines

that gave rise to hNPCs with the total amount of CYFIP1 protein

at comparable levels to C3-1 hNPCs (Y1-1-CP and Y1-3-CP;

Figures 2B and 2D). Importantly, the WAVE2 protein level in

these complemented lines was fully rescued (Figures 2B and

2E), suggesting that CYFIP1 haploinsufficiency is required for

WAVE complex destabilization in hNPCs with 15q11.2 del. Sec-

ond, to determine whether decreased CYFIP1 expression is

sufficient to cause WAVE complex destabilization in hNPCs,

we reduced the endogenous CYFIP1 protein level in control

hNPCs to �50% with short hairpin RNA (shRNA) (Figure 2C;

Table S3). Indeed, expression of shRNA-CYFIP1, but not

shRNA-control, led to significantly decreased WAVE2 protein

expression (Figure 2C). Finally, we examined whether CYFIP1

haploinsufficiency is the cause of adherens junction and apical

polarity impairments observed in neural rosettes from hNPCs

with 15q11.2 del. We first validated our pilot results using an in-

dependent embryoid body protocol (Juopperi et al., 2012), which

gave rise to pure PAX6+ neural progenitors (Figure S2E). Scat-

tered expression of atypical PKCl at the luminal surface was

observed for the majority of neural rosettes from multiple iPSC

lines with 15q11.2 del (Figures 2F and 2G). Importantly, comple-

mentation of CYFIP1 expression to the normal level in two Y1

lines rescued the expression of atypical PKCl at the luminal

surface (Figures 2F and 2G), whereas reduction of CYFIP1

expression by shRNA in C3-1 hNPCs led to scattered expression

of atypical PKCl (Figure S2F). Consistent with an intact WAVE

complex, neural rosettes derived from mutant DISC1-iPSCs

exhibited normal distribution of PKCl at the luminal surface (Fig-

ure 2G). Analysis of additional polarity markers, including PAR3

and b-catenin, also showed consistent results across the groups

(Figure S2G).

Taken together, this series of biochemical and functional ana-

lyses of a collection of 20 iPSC lines established that 15q11.2
Cell Stem Cell 15, 79–91, July 3, 2014 ª2014 Elsevier Inc. 81



Figure 2. Destabilization of the WAVE Complex and Polarity Defects of hNPCs Due to CYFIP1 Deficiency
(A) CYFIP1 is a component of WAVE complex in human pNPCs. Shown are sample western blot images of co-IP analysis of pNPCs using anti-CYFIP1 antibodies.

(B) Reduced CYFIP1 andWAVE2 protein levels in pNPCs carrying 15q11.2 del. Lentiviruses were used to establish two CYFIP1 complementation lines (Y1-1-CP

and Y1-3-CP).

(C) Decreased WAVE2 protein levels after CYFIP1 knockdown by lentivirus-mediated shRNA expression in normal pNPCs for 48 hr.

(D and E) Quantification of protein levels of CYFIP1 and WAVE2 among different pNPCs. All data were normalized to ACTIN levels for loading control and then

normalized to CYFIP1 (D) or WAVE2 (E) in C2-1 pNPCs for comparison. Values represent mean ± SEM (n = 3–5 cultures; *p < 0.05; Student’s t test).

(F andG) Defect in adherens junctions and apical polarity of hNPCs carrying 15q11.2 del and its rescue by CYFIP1 complementation. Shown on the left are sample

confocal images of immunostaining of atypical PKCl for neural rosettes differentiated from iPSCs using the embryoid body method. Scale bar represents 20 mm.

Shownon the right arequantificationsof neural rosettes similar as inFigure1E.Values representmean±SEM(n=5cultures; ***p<0.001; **p<0.01;Student’s t test).

See also Figure S2 and Tables S1 and S3.
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del, through CYFIP1 deficiency, leads to defects in the mainte-

nance of adherens junctions, apical polarity, andWAVE complex

stability in hNPCs.

Requirement of CYFIP1 in Maintaining Adherens
Junctions and Apical Polarity of RGCs in Developing
Mouse Cortex
Given limitations of in vitro studies of human iPSCs, we next

turned to in vivo mouse embryonic cortical development to

assess whether the CYFIP1 function we identified in regulating

hNPCs is physiologically relevant in vivo and, furthermore, to

examine the long-term consequence of CYFIP1 deficiency in

cortical development. In the E15.5 dorsal neocortex, CYFIP1

was found to be accumulated at the ventricular surface in the

ventricular zone (VZ), with lower expression in migrating neurons
82 Cell Stem Cell 15, 79–91, July 3, 2014 ª2014 Elsevier Inc.
in the intermediate zone (IZ) (Figure 3A). The VZ of the midneuro-

genic period is mostly occupied by RGCs, which are neural stem

cells in the developing cortex (Kriegstein and Alvarez-Buylla,

2009). The apical processes of adjacent RGCs are attached to

one another via cadherin-based adherens junctions at the

ventricular surface (Loulier et al., 2009; Rasin et al., 2007). Coim-

munostaining showed that CYFIP1 was highly expressed at the

F-actin-expressing lateral membrane domain and N-cadherin-

and b-catenin-expressing adherens junctions in the apical

endfeet of RGCs (Figures 3B and 3C). With an en face view

from the ventricle, CYFIP1 was found as cytosolic puncta inside

of the ring-like F-actin structure on the ventricular surface

(Figure 3C).

To investigate CYFIP1 function in regulating RGCs, we gener-

ated effective shRNAs specifically against mouse Cyfip1



Figure 3. Critical Role of CYFIP1 in Regulating Adherens Junctions and Apical Polarity of RGCs in the Developing Mouse Cortex

(A–C) Expression of CYFIP1 in the mouse neocortex at E15.5. Shown are sample confocal images of immunostaining of CYFIP1 and N-cadherin. VZ, ventricular

zone; IZ, intermediate zone; CP, cortical plate. Also shown is the en face view of CYFIP1 expression at the ventricular surface (C, left panel). The structure of

F-actin, which forms the boundary between apical endfeet of RGCs on the ventricular surface, was labeled by Phalloidin-Alexa594 (Red). Cross-section images

are shown in right panels. Scale bars represent 50 mm (A), 20 mm (B), and 5 mm (C).

(D and E) Expression of CYFIP1 and other apically polarized proteins in themouse neocortex at E16.5 after in utero electroporation at E13.5 to coexpressGFP and

sh-control or sh-Cyfip1 (#2). Shown are sample confocal images of immunostaining for GFP and N-cadherin (D) and the en face view at 3 mm from the ventricular

surface (E). Scale bars represent 50 mm (D) and 10 mm (E).

See also Figure S3 and Tables S2 and S3.
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(Figure S3A; Table S3). We performed in utero electroporation

with vectors coexpressing GFP and shRNA-Cyfip1#2 (sh-

Cyfip1), or control shRNA (sh-control), into the E13.5 neocortex,

and analyzed 3 days later. GFP+ cells expressing sh-Cyfip1

showed largely absent CYFIP1 immunoreactivity, confirming

the shRNA efficiency against endogenous CYFIP1 in vivo (Fig-

ure S3B). While GFP+ cells expressing sh-control in the VZ

showed robust N-cadherin expression at the ventricular surface,

those expressing sh-Cyfip1 did not (Figures 3D and 3E). En face

view near the ventricular surface further showed reduced N-cad-

herin expression in some GFP� cells at regions in contact with

GFP+ cells expressing sh-Cyfip1, suggesting a potential noncell

autonomous effect (Figure 3E). Thus, similar to its function in

cultured hNPCs, CYFIP1 maintains adherens junctions and api-

cal polarity of neural stem cells in the developing mouse cortex

in vivo.

Ectopic Localization of CYFIP1-Deficient RGCs outside
of the VZ
What is the functional consequence of impairments in adherens

junctions and apical polarity of RGCs from CYFIP1 deficiency?
We examined RGC cell body distribution by Pax6 immunohisto-

chemistry. Pax6+GFP+ cells expressing sh-control were mostly

restricted within the VZ (Figures 4A, left panel, and 4B). In

contrast, a significant percentage of Pax6+GFP+ cells express-

ing sh-Cyfip1 (#2) were ectopically misplaced in the subventric-

ular zone (SVZ) and IZ, at the expense of VZ localization (Figures

4A, middle panel, and 4B). Aberrant localization of RGCs was

also observedwith an independent shRNA againstmouseCyfip1

(#1; Figure S4A). Importantly, this defect was rescued by coex-

pression of shRNA-resistant CYFIP1 cDNA (Figures 4A, right

panel, and 4B), confirming the specificity of shRNA experiments.

GFP+ mitotic cells labeled with phospho-HistoneH3 were also

found to be scattered in the SVZ and IZ (Figure 4C). To determine

whether NPC proliferation was affected by CYFIP1 deficiency,

proliferating cells were pulsed with EdU and examined 2 hr later.

Similar to hNPCs in vitro (Figure S2B), CYFIP1-deficient cells

showed EdU incorporation comparable to those expressing sh-

control, despite their ectopic localization (Figures 4D and S4B).

To examine cell cycle progression, we determined the cell-cycle

exit index defined as the percentage of EdU+Ki67� cells among

all EdU+ cells at 24 hr after EdU administration and did not find
Cell Stem Cell 15, 79–91, July 3, 2014 ª2014 Elsevier Inc. 83



Figure 4. Ectopic Localization of CYFIP1-Deficient RGCs outside of the VZ in the Developing Mouse Cortex
(A and B) Ectopic localization of Pax6+ RGCs in the SVZ and IZ of E16.5 neocortices after in utero electroporation at E13.5 to coexpress GFP and sh-control or sh-

Cyfip1, or coexpress GFP/sh-Cyfip1 and cDNA for shRNA-Cyfip1 resistant HA-tagged CYFIP1. Shown in (A) are sample confocal images of immunostaining of

Pax6, GFP, and HA. Cotransfection of GFP/sh-Cyfip1 and shRNA-resistant HA-tagged CYFIP1 was confirmed by colocalization of GFP and HA immunostaining

(the right-most panel). Scale bar represents 50 mm. Shown in (B) are two different quantifications of the distribution of GFP+Pax6+ cells in the neocortex. Upper

panel represents GFP+Pax6+ cells in each of ten equal-size vertical bins expressed as percentages of total GFP+Pax6+ cells (1: the most apical, 10: the most

basal). Lower panel represents percentages of GFP+Pax6+ cells in the VZ (VZ) and in other layers (non-VZ). Values represent mean ± SEM (n = 4–5 animals; **p <

0.01; Student’s t test).

(C) Aberrant localization of proliferating cells expressing sh-Cyfip1 in E16.5 neocortex. Sample confocal images of immunostaining for GFP and an M-phase

marker, phospho-HistoneH3 (pH3), are shown. Scale bar represents 50 mm. Also shown are quantifications of percentages of GFP+pH3+ cells at the ventricular

surface (surface division) and at other locations (nonsurface division). Values represent mean ± SEM (n = 5 animals; ***p < 0.001; Student’s t test).

(D) Proliferation of CYFIP1-deficient RGCs outside of the VZ. E13.5 embryos were electroporated to coexpress GFP and sh-Cyfip1 and fixed at 2 hr after EdU

injection at E16.5. Shown are sample confocal images of staining for GFP, Pax6, EdU, and DAPI. Note that ectopic GFP+Pax6+ cells in the IZ still incorporated

EdU, representing their ability to proliferate far from the ventricular surface. Scale bars represent 50 mm (left panel) and 20 mm (insets).

See also Figure S4 and Table S2.
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any differences (Figure S4C). Together, these results indicate

that CYFIP1 is important for proper placement and pattern of

mitosis, but not essential for the proliferation and cell-cycle pro-

gression of RGCs in the developing mouse cortex in vivo.

Ectopic Placement of Intermediate Progenitor Cells and
Cortical Neurons Generated from CYFIP1-Deficient
RGCs
We next examined the direct progeny from RGCs, intermediate

progenitor cells (IPCs), which express Tbr2 and proliferate tran-
84 Cell Stem Cell 15, 79–91, July 3, 2014 ª2014 Elsevier Inc.
siently in the SVZ to generate neurons (Englund et al., 2005).

Tbr2+GFP+ cells expressing sh-Cyfip1 were also scattered in

the VZ/SVZ/IZ, while Tbr2+GFP+ cells expressing sh-control

mainly resided in the SVZ (Figures 5A and 5B). On the other

hand, the proportion of Pax6+GFP+ cells and Tbr2+GFP+ cells

were not altered between those expressing sh-control and sh-

Cyfip1 (Figure 5C), suggesting that CYFIP1 is dispensable for

the proper differentiation of RGCs into IPCs.

Glutamatergic projection neurons of the adult cortex are

generated in a stereotyped temporal order, with deep layer



Figure 5. Ectopic Placement of Intermedi-

ate Progenitor Cells and Cortical Neurons

upon CYFIP1 Knockdown in RGCs

(A–C) Ectopic placement of intermediate progeni-

tor cells (IPCs) upon CYFIP1 knockdown in RGCs.

E13.5 embryos were electroporated to coexpress

GFP and sh-Cyfip1 or sh-control and examined at

E16.5. Shown in (A) are sample confocal images of

immunostaining for GFP, Pax6, Tbr2, and DAPI.

Scale bar represents 50 mm. Shown in (B) are

quantifications of the distribution of GFP+Tbr2+

cells in the neocortex. The graph represents

GFP+Tbr2+ cells in each of ten equal-size vertical

bins expressed as the percentage of total GFP+

Tbr2+ cells. Values represent mean ± SEM (n = 4–5

animals; **p < 0.01; Student’s t test). Shown in (C)

are quantifications of percentages of GFP+ cells

that were Pax6+ or Tbr2+. Values representmean ±

SEM (n = 4 animals; p > 0.1; Student’s t test).

(D and E) Ectopic placement of cortical neurons

upon CYFIP1 knockdown in RGCs. Same as in

(A–C), except that electroporated brains were

examined at P5. Shown in (D) are sample confocal

images of immunostaining for GFP, Cux1, and

CTIP2. Right panels represent two different insets

in the left panels. Arrows point to GFP+CTIP2+ or

GFP+Cux1+ cells. Scale bars represent 100 mm.

Shown in (E) are quantifications of percentages of

GFP+CTIP2+ cells (top panel) or GFP+Cux1+ cells

(bottom panel) that were distributed in upper or

deep layers, respectively. The boundary between

upper and deep layers was established at the

apical limit of Cux1+ cells. Values represent

mean ± SEM (n = 4 animals; *p < 0.05; Student’s

t test).

See also Table S2.
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neurons (layer V/VI: CTIP2+) produced first and upper layer

neurons (layer II/III/IV: Cux1+) produced later (Leone et al.,

2008). Defects in RGCs, which serve as the main radial scaffold

for migrating neurons, could potentially lead to failure of neurons

to reach their normal position. To examine the long-term conse-

quence of Cyfip1 knockdown on cortical layer formation, we

analyzed P5 brains after in utero electroporation of shRNAs at

E13.5. CTIP2+ neurons, which normally localize in deep layers,

showed more frequent localization in upper layers after sh-

Cyfip1 expression in RGCs (Figures 5D and 5E). On the contrary,

Cux1+ neurons, which normally localize in upper layers, were

present in a higher percentage in deep layers after sh-Cyfip1

expression (Figures 5D and 5E). The ratio of CTIP2+ versus

Cux1+ cells among all GFP+ cells was not significantly different

between sh-control (0.22 ± 0.03) and sh-Cyfip1 (0.23 ± 0.02;
Cell Stem Cell 15,
n = 4), suggesting that CYFIP1 is dispens-

able for neuronal subtype specification.

Some mislocalized Cux1+ and CTIP2+

cells appeared to be GFP� (Figure 5D).

This could be due to the diluted GFP

expression in the P5 brain after multiple

rounds of cell division or, alternatively,

noncell autonomous migration defects

due to aberrant radial scaffolds of CY-
FIP1-deficient RGCs. These results demonstrate that CYFIP1

deficiency causes improper placement of IPCs and glutamater-

gic projection neurons, resulting in cortical layer malformation.

CYFIP1 Signaling Mechanism in Regulating RGCs in the
Developing Embryonic Mouse Cortex
Similar to findings from hNPCs (Figure 2A), co-IP analysis using

E14.5 mouse cortical lysates showed that endogenous CYFIP1

interacted with several WAVE components, including WAVE1,

WAVE2, Abi1, and Nap1 (Figure 6A). Knockdown of CYFIP1 in

mouse NPCs in vitro also led to marked decrease of WAVE2

and Abi1 proteins (Figure 6B). Immunohistological analysis

showed that WAVE2 protein expression at the ventricular sur-

face was drastically decreased after Cyfip1 knockdown in vivo

(Figure 6C). These results suggested a conserved role and
79–91, July 3, 2014 ª2014 Elsevier Inc. 85



Figure 6. Critical Role of CYFIP1 Signaling in Maintaining Adherens Junctions and Proper Placement of RGCs in the Developing Mouse

Cortex

(A) CYFIP1 is a component of WAVE complex in the developing mouse cortex. Shown are sample western blot images of co-IP analysis using anti-CYFIP1

antibodies and E14.5 forebrain lysates.

(B) Reduced WAVE2 protein levels by CYFIP1 knockdown in mouse NPCs. Mouse NPCs were infected with retroviruses expressing sh-control, or sh-Cyfip1

(#1 or #2) and then subjected to western blot analyses 3 days later. Shown are sample western blot images and quantifications of CYFIP1 and WAVE2 protein

levels. Values represent mean ± SEM (n = 3; **p < 0.01; Student’s t test).

(C) ReducedWAVE2 protein levels at the ventricular surface in E16.5 neocortices in vivo. E13.5 embryos were electroporated to coexpress GFP and sh-Cyfip1 or

sh-control and examined at E16.5. Shown are sample confocal images of immunostaining for GFP, WAVE2, and DAPI. Scale bar represents 20 mm.

(D–G) Similar RGC defects among knockdown of CYFIP1,WAVE complex component Abi1, or downstream effectors Arp2/3. E13.5 embryoswere electroporated

to coexpress GFP and sh-Abi1 or sh-Arp2/sh-Arp3 (double knockdown), and examined at E16.5. Shown in (D) are sample confocal images of immunostaining for

(legend continued on next page)
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signaling mechanism of CYFIP1 in regulating WAVE complex

stability and adherens junctions in both human and mouse

NPCs.

Next, we examined the functional role of CYFIP1-dependent

WAVE complex and downstream signaling in regulating RGCs

in vivo (Figure S5A). We developed effective shRNAs against

mouse Abi1 and downstream mediators Arp2/3 (Figures S5B

and S5C). In utero electroporation analyses showed a lack of

N-cadherin expression at the ventricular surface by GFP+ cells

expressing sh-Abi1or sh-Arp2/3 (double knockdown; Figure 6D).

GFP+Pax6+ cells expressing sh-Abi1 or sh-Arp2/3 also showed

scattered distribution in the VZ/SVZ/IZ (Figures 6E–6G). These

results suggest that, similar to CYFIP1, WAVE complex-medi-

ated signaling is important for themaintenance of adherens junc-

tions and proper placement of RGCs in the developing cortex.

Epistatic Interaction of Gene Expression-Associated
Variants of the WAVE Signaling Components for Risk of
Schizophrenia
Our findings of similar roles of WAVE signaling components in

regulating RGCs, together with previous findings of association

of 15q11.2 del with risk for schizophrenia (Malhotra and Sebat,

2012), led to a hypothesis that common genetic variants within

the WAVE signaling pathway might interact to affect risk for

schizophrenia even in the absence of association at the individ-

ual gene level (Figure 1B). The goal of the clinical genetic associ-

ation analyses was to model molecular interactions of CYFIP1

and WAVE components identified in iPSC and animal studies.

We first examinedmRNA expression in the dorso-lateral prefron-

tal cortex (DLPFC) of postmortem human brains in order to find

specific genetic variants that were associated with expression

of genes in the WAVE signaling pathway (i.e., expression

quantitative trait loci [eQTLs]). We performed a cis-association

analysis of SNP variants with gene expression measured by

RNA-sequencing (RNA-seq) in a group of 64 Caucasian subjects

with no history of medical or psychiatric disease (Table S4). Sig-

nificant associations were found for rs268864 with ACTR2/Arp2

expression (p = 0.02), rs2797930withABI1 expression (p = 0.02),

and rs7168367 with CYFIP1 expression (p = 0.006). SNP

rs4778334, previously associated with risk for schizophrenia in

a case-control Han Chinese sample (Zhao et al., 2013a), was

also associated with CYFIP1 gene expression (p = 0.05). Inter-

estingly, rs4778334 does not show linkage disequilibrium with

other genotyped SNPs in the European ancestry populations

or in the Chinese, consistent with a potential functional effect

of this SNP (Figure S6). We also found that, except for CYFIP1,

all genes in this network (ABI1, WASF1/WAVE1, WASF2/

WAVE2, NCKAP1/Nap1, ACTR2/Arp2, and ACTR3/Arp3) tend

to be coexpressed together in a similar pattern (Table S5).

To search for evidence that eQTLs in the WAVE signaling

pathwaymight be associated with risk for schizophrenia, we per-

formed single genetic association analysis of the selected four

expression-associated SNPs (or proxy SNPs) in four indepen-

dent schizophrenia case-control data sets of European ancestry.
GFP, Pax6, N-cadherin, andDAPI. Shown in (E) are sample confocal images of imm

are two different quantifications of the distribution of GFP+Pax6+ cells in the neo

mean ± SEM (n = 4 animals; **p < 0.01; ***p < 0.001; Student’s t test).

See also Figure S5 and Tables S2 and S3.
No significant single SNP association was found in any of the

four cohorts (Table S6). Targeted pairwise SNP-SNP interaction

analyses were carried out among three SNPs—rs268864 (SNP1)

at ACTR2, rs4778334 (SNP3) at CYFIP1jjNIPA2, and rs7168367

(SNP4) at CYFIP1jjNIPA1 as these were only SNPs genotyped in

all four cohorts. An interaction was detected between rs268864

at ACTR2 and rs4778334 at CYFIP1jjNIPA2 at a marginal signif-

icance (p = 0.0553) in the largest American LIBD/CBDB cohort

(Figure 7A). The same trend of interaction with these exact alleles

was also found in three smaller schizophrenia case-control

cohorts of American (GRU; p = 0.149), German (MUN; p =

0.258), and Scottish origin (ABE; p = 0.215). Meta-analysis of

the pairwise interaction in all four cohorts showed significant

evidence for interaction (p = 0.00417) between rs268864 at

ACTR2 and rs4778334 at CYFIP1jjNIPA2; interaction analysis

of the combined sample of four cohorts confirmed the interaction

in both an additivemodel (p = 0.0035) and a genotypicmodel (p =

0.0048; Figure 7A). The results of the meta-analysis are signifi-

cant after correction for all combinations of two-way interactions

based on the three SNPs analyzed. Moreover, the interactions,

which were directionally consistent across all four data sets,

were hypothesized based on eQTLs that specifically modeled

the directionality of biologic interactions in the model system

experiments.

It is interesting to note that depending on the genotype

background of the ACTR2 SNP rs268864, genotypes of

rs4778334 at CYFIP1 showed varying effects from negative to

positive on risk of schizophrenia (Figure 7B). In the group of

rs268864 genotype AA, individuals carrying genotype CC and

CT at rs4778334 were less likely associated with risk of schizo-

phrenia in comparison with TT genotype (p = 0.0244), and

odds ratio estimates were 0.716 and 0.772, respectively. In

contrast, in the group of rs268864 genotype GG, individuals

carrying genotype CC and CT at rs4778334 were more likely

associated with risk of schizophrenia in comparison with TT

genotype (p = 0.0103), and odds ratio estimates were 11.14

and 4.56, respectively. Alternating genotype associations at

one locus based on the genotype at another locus are classic

epistatic phenomena.

DISCUSSION

Our study identified the functional role and signaling mechanism

underlying CYFIP1 regulation of neural stem cells and provides

insight into how risk factors for neuropsychiatric disorders regu-

late neural development. Using human iPSCs as an entry point to

investigate a prominent CNV risk factor encompassing multiple

genes for schizophrenia and other neuropsychiatric disorders

(Figures 1A and 1B), we uncovered cellular phenotypes in

derived hNPCs and identified the responsible gene within the

CNV. These in vitro findings of developmentally relevant pheno-

types in human cells guided our analyses of neural stem cells in

the developing mouse cortex in vivo and led to the identification

of the underlying signaling mechanism. The mechanistic insight
unostaining for GFP, Pax6, and DAPI. Scale bars represent 50 mm. Also shown

cortex among different experiments, similar as in Figure 4B. Values represent
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Figure 7. Epistatic Interaction of Gene Expression-Associated Variants of the WAVE Signaling Components for Risk of Schizophrenia

(A) Interaction analysis of SNPs rs2688674*ACTR2 and rs4778334*CYFIP1-NIPA1 in combined samples of four cohorts in European ancestry population.

Analysis was performed adjusting for sex and cohort effect. DF, degree of freedom.

(B) Effect of interaction by genotypes on risk of schizophrenia from a logistic regressionmodel based on genotypic interaction ofACTR2 andCYFIP1 in combined

samples of four cohorts. Adj p is p value after adjusting for multiple testing from post hoc analysis. SNPs were coded as 0, 1, and 2 for number of minor alleles.

See also Figure S6 and Tables S4, S5, and S6.
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allowed us to generate a hypothesis and test it with gene expres-

sion analyses in human brains and genetic association studies,

resulting in the identification of an epistatic interaction for risk

of schizophrenia. Our study provides an example of how genetic

risk factors for complex human disorders can be studied in com-

plementary systems using patient-derived iPSCs as the leading

tool for discovery.

15q11.2 CNVs have emerged as a prominent risk factor for

several neuropsychiatric disorders (Malhotra and Sebat, 2012).

Our results from multiple levels of analyses provide evidence

to support a specific gene within this CNV, CYFIP1, as a poten-

tial major contributing factor to biological processes implicated

in the neurodevelopmental origins of these disorders. 15q11.2

del has been identified as one of the three most frequent CNV

risk factors for schizophrenia and increases risk 2- to 4-fold (In-

ternational Schizophrenia Consortium, 2008; Stefansson et al.,

2008). While none of the SNPs we examined within the CYFIP1

and WAVE signaling pathway showed significant independent

risk for schizophrenia in four cohorts of European ancestry, we

identified a potential epistatic interaction between CYFIP1 and

WAVE signaling mediator ACTR2 /Arp2 for increased risk for

schizophrenia with an odds ratio up to 11 (Figure 7B). While

these results must be taken as preliminary and in need of further

replication as the overall statistics are not particularly strong, our

study implicates WAVE signaling in risk for schizophrenia and

supports an emergent model that multiple factors within the

same signaling pathway interact epistatically to affect the risk

for psychiatric disorders. Notably, 15q11.2 CNVs themselves

are not specific to schizophrenia (De Wolf et al., 2013). In a large

study with over 15,000 patient samples, 15q11.2 del was found

to be strongly associated with developmental delay in children

(Cooper et al., 2011). Studies have also linked 15q11.2 del to

epilepsy (de Kovel et al., 2010; Jähn et al., 2014; Mullen et al.,
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2013). Interestingly, CNVs with a duplication of this same region

have been associated with autistic spectrum disorder (Nishi-

mura et al., 2007; van der Zwaag et al., 2010; Wegiel et al.,

2012). In addition, CYFIP1 is within larger 15q11.2-13.1 CNVs

that have also been linked to schizophrenia, autistic spectrum

disorder, and bipolar disorder (Malhotra and Sebat, 2012).

Therefore, our findings have broad implications for these disor-

ders and identify a signaling pathway for future targeted

investigation.

Our study provides insight into how CYFIP1 signaling regu-

lates early mammalian neural development. While several pre-

vious studies have investigated roles of CYFIP1 in neurons, its

function in neural stem cells was completely unknown. In

Drosophila, the fly ortholog of Cyfip1 was shown to regulate

neuromuscular junction formation (Schenck et al., 2003; Zhao

et al., 2013b) and eye morphogenesis (Bogdan et al., 2004;

Galy et al., 2011). In mice, CYFIP1 interacts with FMRP and

cap protein eIF4E to regulate activity-dependent protein transla-

tion in mature neurons (Napoli et al., 2008). Furthermore, Cyfip1

haploinsufficiency in mice produces fragile X-like phenotypes

(Bozdagi et al., 2012). By focusing on the earliest stages of

cortical development, our study provides evidence for a critical

role of CYFIP1 in regulating adherens junctions and apical

polarity of both human neural stem cells in the neural rosette

model and mouse RGCs in the developing cortex in vivo. More-

over, as a functional consequence of CYFIP1 deficiency, RGCs

and their progeny are aberrantly localized in the developing

cortex in vivo, resulting in altered stratification of projection

neurons and cortical layer malformation. Correct positioning of

neurons in the mammalian cortex is a critical determinant of

connectivity and neural function, as highlighted by severe

neuronal migration disorders in humans (Ross and Walsh,

2001). Deficits in cortical patterning have also been suggested
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in schizophrenia (Arnold, 1999). A recent study found high inci-

dence of patches of neocortical disorganization in autistic brains

(Stoner et al., 2014), reminiscent of what we observed in mouse

cortex after in utero exploration to knockdown CYFIP1. Our

study, therefore, provides a mechanistic model to understand

how 15q11.2 CNVs as risk factors may contribute to susceptibil-

ity of neuropsychiatric disorders. Our study does not rule out the

possibility that other factors within 15q11.2 CNVs affect neural

development or that 15q11.2 CNVs also affect functional integ-

rity of mature neurons, as suggested by rodent studies involving

eIF4E (Napoli et al., 2008). Future studies of human neurons

derived from our iPSC collection will help address the relevance

of this pathway in human neuronal function.

Our study also reveals a critical role of the WAVE complex

signaling in regulating neural stem cells. Early lethality of

knockout mice for the majority of WAVE signaling components,

including CYFIP1 (Bozdagi et al., 2012), WAVE2 (Yamazaki

et al., 2003; Yan et al., 2003), Abi1 (Dubielecka et al., 2011),

and Arp3 (Vauti et al., 2007), supports a requisite role of this

pathway for mouse survival, which may have precluded in vivo

investigation of its role in neural stem cells in early studies. Given

that adherens junctions are rapidly lost in newly committed IPCs

and neurons (Itoh et al., 2013; Rousso et al., 2012) and that there

is little or reduced CYFIP1 expression in IPCs and immature

neurons (Figure 3A), our result suggests that aberrant positioning

of cortical projection neurons is caused by CYFIP1-WAVE

signaling defects in RGCs. Future studies of cell-type-specific

manipulation of CYFIP1-WAVE signaling in IPCs and/or imma-

ture neurons will provide a more definitive answer.

Human iPSC technology provides a new experimental plat-

form to investigate cellular phenotypes and mechanisms in

genetically tractable and disease-relevant human cell types. To

date, patient-derived iPSCs, especially those related to mono-

genic disorders, have been successfully used to support models

of disease pathology developed from animal studies, to demon-

strate conserved cellular function of signaling pathways across

species, or to facilitate large-scale screening of compounds to

identify novel therapeutics (Bellin et al., 2012). Different from

monogenic disorders, psychiatric disorders are often genetically

complex and typically present with substantial variations in

symptoms and degrees of impairment across individuals.

Further, many risk-associated genetic mutations are not exclu-

sive to clinical populations, nor a particular disease. A key chal-

lenge and opportunity for human iPSC biology is to generate new

insight into (patho)physiological phenotypes and mechanisms

beyond merely supporting previous findings and concepts.

Using human iPSCs as a leading discovery tool, we identified

consistent cellular phenotypes of neural stem cells that are

specific for 15q11.2 del, as they were not present in hNPCs

derived from iPSCs with a DISC1 mutation, another risk factor

for neuropsychiatric disorders (Thomson et al., 2013). While

genetic risk factors for psychiatric disorders do not code for

behavior, we provide an example that they can lead to specific

cellular abnormalities of biological processes implicated in the

neurodevelopmental origins of these disorders. Using human

iPSCs as an entry point enabled identification of investigative

targets, followed by validation of in vivo physiological relevance

and identification of underlying mechanisms using animal

models, and finally, a return to human genetic association
studies to support the disease-relevance of the identified

pathway in humans (Figure 1B).

In summary, by leveraging and integrating information derived

from multiple levels of analyses, ranging from cellular processes

in human neural stem cells, in vivo animal models, to targeted

human genetic association studies, we provide a mechanistic

understanding of how 15q11.2 microdeletion affects neural

developmental processes. Furthermore, our study illustrates

the potential of human iPSC-based research to enable a multi-

faceted approach to tackle the mystery of complex psychiatric

disorders.

EXPERIMENTAL PROCEDURES

iPSC Generation, Culture, Characterization, and Neural

Differentiation

All iPSC lines were derived from human donor dermal skin fibroblasts using

integration-free episomal or Sendai virus methods. Fibroblasts with 15q11.2

del (Y1, Y3, and Y4) were collected through the National Institute of Mental

Health (NIMH) childhood-onset schizophrenia cohort and their family mem-

bers (Mattai et al., 2011). All procedures were performed in accordance with

IRB and ISCRO protocols approved by the Institutional Committees. iPSCs

were cultured and characterized as previously described (Chiang et al.,

2011; Juopperi et al., 2012).

iPSCs were differentiated into pNPCs according to a published protocol (Li

et al., 2011). Neural rosette formation assays were performed using the mono-

layer (Shi et al., 2012) and embryoid body methods (Juopperi et al., 2012).

Neural rosettes were initially identified based on polarized pattern of DAPI

staining and NESTIN immunoreactivity. Only individual nonoverlapped neural

rosettes that were 50–200 mm in diameter were included for quantification. The

number of rosettes showing an intact apical-ring structure (>90% of coverage

of apical-ring circumference with atypical PKCl, N-cadherin, PAR3, or

b-catenin immunoreactivity) and incomplete/partial apical structure (<90%

coverage) were quantified.

In UteroElectroporation andQuantitative Analysis ofMouseCortical

Development

In utero electroporation was performed as described (Saito, 2006). For

quantitative analysis of electroporated neocortices, GFP+ cells localized within

the dorso-lateral cortex were examined. A total of three to six brain sections

were analyzed per animal by taking 3 3 3 images to cover the electroporated

region of each coronal section with a 253 or 403 objective and comparing

them with equivalent sections in littermate counterparts. Quantifications

were performed using Imaris software (Bitplane). For distribution plots, the

distances between GFP+Pax6+ cells or GFP+Tbr2+ cells and the ventricular

surface were calculated by using an in-house MATLAB script (MathWorks)

and plotted after dividing each distance by total length of the neocortex and

subgrouping into ten equal-size vertical bins (1: the most apical, 10: the

most basal).

All animal procedures were performed in accordance with the protocol

approved by the Institutional Animal Care and Use Committee.

mRNA Expression Analysis of Postmortem Human Brains, SNP

Genotyping, and Clinical Genetic Association and Interaction

Analyses

mRNA expression data were generated from postmortem DLPFC gray matter

from 64 subjects without history or diagnosis of a medical or psychiatric disor-

der (51 males; mean age: 44 ± 14.9 years), all from European ancestry popu-

lation and matched on age and various postmortem tissue characteristics.

Detailed methods relating to the Brain Tissue Collection of the Clinical Brain

Disorders Branch at NIMH (CBDB/NIMH) and the Lieber Institute for Brain

Development (LIBD) have been described elsewhere (Colantuoni et al., 2011).

DNA for genotyping was obtained from the cerebella of samples in the

collection using Illumina OMNI 2.5M SNP chips. We used ANCOVAs, with

age, sex, and RIN (RNA integrity number) as covariates, to investigate main

effects of SNPs on gene expression.
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We carried out clinical genetic association and interaction analyses using

logistic regression in four independent sample cohorts of cases with schizo-

phrenia and healthy controls. Final interaction analysis was also assessed in

the combined sample of four cohorts while controlling cohort effect in order

to gain adequate power to detect interactions. The sample collection, geno-

typing, and quality control have been described elsewhere (Zhang et al., 2011).
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(Cell Stem Cell 15, 79–91; July 3, 2014)

A reader has pointed out that there are duplications of two images in Figure 2F of our original published manuscript. Upon careful

examination of original data, we discovered that there is indeed duplication of one sample image (Y1-1-CP and Y1-3-CP) caused

by inadvertent inclusion of erroneous files during our organization of the published data. To correct this figure, we have replaced

both sample images for Y1-1-CP and Y1-3-CP. All others remain the same. The quantification for parity defects was performed

with a different approach (summarized in Figure 2G). The unintentional mistake in figure assembly does not affect our underlying

conclusion. We apologize for any confusion that we may have caused by the mistake and we wish to thank the anonymous reader

for bringing it to our attention.

The correct figure is presented below.
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Figure 2. Destabilization of the WAVE Complex and Polarity Defects of hNPCs Due to CYFIP1 Deficiency

Cell Stem Cell 16, 339, March 5, 2015 ª2015 Elsevier Inc. 339

mailto:gming1@jhmi.edu
mailto:shongju1@jhmi.edu
http://dx.doi.org/10.1016/j.stem.2015.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2015.02.003&domain=pdf

	Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junc ...
	Introduction
	Results
	Defects in Adherens Junctions and Apical Polarity of hNPCs Derived from Human iPSCs Carrying 15q11.2 Del
	WAVE Complex Destabilization and Polarity Defects of hNPCs Due to CYFIP1 Haploinsufficiency
	Requirement of CYFIP1 in Maintaining Adherens Junctions and Apical Polarity of RGCs in Developing Mouse Cortex
	Ectopic Localization of CYFIP1-Deficient RGCs outside of the VZ
	Ectopic Placement of Intermediate Progenitor Cells and Cortical Neurons Generated from CYFIP1-Deficient RGCs
	CYFIP1 Signaling Mechanism in Regulating RGCs in the Developing Embryonic Mouse Cortex
	Epistatic Interaction of Gene Expression-Associated Variants of the WAVE Signaling Components for Risk of Schizophrenia

	Discussion
	Experimental Procedures
	iPSC Generation, Culture, Characterization, and Neural Differentiation
	In Utero Electroporation and Quantitative Analysis of Mouse Cortical Development
	mRNA Expression Analysis of Postmortem Human Brains, SNP Genotyping, and Clinical Genetic Association and Interaction Analyses

	Supplemental Information
	Acknowledgments
	References

	Update
	Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junc ...


